1、溶解氧(DO):
首先介绍下溶解氧很多人认为是溶解在水中的氧,其实不然我们将它定义为溶解在水中的氧经过微生物氧化反应利用后水中剩余的氧量。
溶解氧过高或者过低对硝化反应的影响?
溶解氧过高:对硝化反应没有明显的抑制,但是好氧池是个大家庭,溶解氧过高会导致污泥老化,菌胶团解体,硝化菌流失。同时也是对能源的一种浪费。
溶解氧过低:好氧菌与硝化菌恶性竞争,硝化菌如此娇贵,如何竞争的过强大的好氧军团。根据多年经验溶解氧低于1.5mg/l,硝化细菌便会收到抑制,低于0.5mg/l,硝化反应基本停止。一般把溶解氧控制在 2-3mg/l 左右为佳。
2、营养物质
微生物的生长繁殖也离不开营养物质。营养物质的均衡决定了微生物的生长情况。关于营养物质也就是碳,氮,磷等物质。硝化细菌是自养菌,需要无机碳源,水中自带的碳酸根及碳酸氢根以及曝气和异养菌代谢产生的CO2完全可以满足硝化细菌的需要,而有机碳源(BOD)对硝化却是一个威胁,有机碳源过多,导致异养菌争夺氧气和优势菌种的地位,所以,一般进硝化池BOD不大于80PPM,而脱氮系统不缺N源,不需要考虑,磷酸盐的话,硝化细菌在菌胶团中比例很小,而且合成慢,基本上都可以满足需要。
3、进水氨氮的浓度:
硝化反应是将氨态氮转化为亚硝态氮,再亚硝酸菌氧化为硝态氮。有研究表明当氨氮浓度较低时,随着浓度的增加,氨氧化速率和亚硝酸氧化速率均增加,而且亚硝酸氧化速率增长较快,当浓度增大到一定程度,反应速率均减小。
平常运营过程中,总结的经验为氨氮起始浓度(好氧池前端)市政高于 100mg/l 硝化反应,工业高于 150mg/l 将受到一定程度抑制。(高氮氮废水可以通过回流稀释等避免起始浓度的影响,比如养殖,垃圾渗滤液等)
4、盐分:
在生物法处理高盐含氮废水的过程中,盐分能够直接影响溶解氧浓度及氧气转移到液相的能力,引起硝化微生物新陈代谢功能、活性污泥沉降性、颗粒污泥以及生物膜结构改变,导致生物絮体或胞外聚合物解体从而影响硝化效率。
根据经验:硝化反应的氯小于2000mg/l 的情况下正常进行 ;当然如果进水比较稳定,可以驯化耐盐,耐氯,氯在5000mg/L也能正常进行。氯的影响在于波动性,如果进水波动大,硝化受的影响就大,很容易流失!
5、碱度:
在硝化过程中需要消耗一定量的碱度,如果污水中没有足够的碱度,硝化反应将导致pH值的下降,使反应速率减缓,所以硝化反应要顺利进行就必须使污水中的碱度大于硝化所需的碱度。
对于典型的城市污水,进水中NH3-N浓度一般为 20~40mg/L。TKN 约 50~60mg/L,碱度约200mg/L(以Ca2CO3计)左右。
在硝化反应中每硝化1gNH3-N需要消耗7.14g碱度,所以硝化过程中需要的碱度量可按下式计算:
碱度=7.14×QΔCNH3-N×10-3
式中:
Q 为进入滤池的日平均污水量,m3/d;
ΔCNH3-N 为进出NH3-N浓度的差值,
mg/L;
7.14 为硝化需碱量系数,kg碱度/kgNH3-N 。
Ø 对于含氨氮浓度较高的工业废水,通常需要补充碱度才能使硝化反应器内的pH值维持在7.2~8.0之间。计算公式如下:
碱度=K×7.14×QΔCNH3-N×10-3
式中:K 为安全系数,一般为 1.2~1.3。
实际工程中进行碱度核算应考虑以下几部分:入流污水中的碱度,生物硝化消耗的碱度,分解 BOD5产生的碱度,以及混合液中应保持的剩余碱度。要使生物硝化顺利进行,必须满足下式:
原水总碱度+ BOD5 分解产生的碱度>硝化消耗的碱度+混合液应保持的碱度如果碱度不足,要使硝化顺利进行,则必须投加纯碱,补充碱度。
投加的碱量可按下式计算:
补充碱度=(硝化消耗的碱度+混合液应保持的碱度)-(原水总碱度+ BOD5分解产生的碱度
式中:系统应补充的碱度,mg/L;
硝化消耗的碱度一般按硝化每kgNH3-N消耗 7.14kg碱计算。(以 CaCo3);
混合液应保一般按曝气池排出的混合液中剩余 50mg/L 碱度(以 CaCO3 计)计算;
BOD5分解过程中产生的碱量与系统的 SRT 有关系:
当 SRT>20d 时,可按降解每千克 BOD5 产碱 0.1kg 计算;
当SRT=10~20d 时,按 0.05kgALK/kg BOD5;
当SRT<10d时,按 0.01gALK/kg BOD5。